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The correlations between the response of a random walker to an external driving field F switched on at time
ta, with the particle’s fluctuations in the aging period �0, ta� are investigated. Using the continuous time random
walk and the quenched trap model, it is shown that these correlations remain finite even in the asymptotic limit
ta→�. Linear response theory gives a relation between the correlations, the fractional diffusion coefficient, and
the field F, thus generalizing the Einstein relation. In systems which exhibit aging, fluctuations in the aging
period can be used to statistically predict the nonidentical response of particles to an external field.

DOI: 10.1103/PhysRevE.75.060104 PACS number�s�: 05.60.Cd, 02.50.�r, 05.40.Fb

The continuous time random walk �CTRW� �1,2� and the
quenched trap model �2–4� are models of anomalous diffu-
sion used to describe a wide variety of physical systems. The
CTRW model was suggested in the 1970s by Scher and
Montroll �5� to model anomalous non-Gaussian transport of
electrons in disordered systems, while Bouchaud �6� used the
trap model to describe the phenomenology of glassy dynam-
ics, in particular aging. Consider a random walk process
starting at time t=0. In the time interval �0, ta�, called the
aging period, particles undergo unbiased diffusion, then at
time ta an external field F is switched on which breaks the
symmetry of the system, causing a net drift. When the mean
displacement of the particles, namely, the averaged response
of the particles to the external driving force, depends on ta
even when ta→�, the transport is said to exhibit aging �see
discussion below�. Aging in the CTRW and the trap model is
well investigated �4,7–11�. The aging in these models is re-
lated to the power law distribution of waiting or trapping
times of the particle, in such a way that the average waiting
time is infinite �see details below�. When the average waiting
time is infinite, the characteristic time scale of the dynamics
diverges, and memory effects become very important even
when observation times becomes long. Power law trapping
times is a wide spread mechanism of aging, for example, in
the aging behavior of blinking quantum dots �12,13�, where
power law waiting times in dark and bright states are ob-
served.

Here we investigate a new aspect of aging. Within the
framework of the CTRW and the quenched trap model, we
show that the response of the particle to a bias turned on at
time ta is strongly correlated with the fluctuations of the par-
ticle in the aging period. Thus in principle knowledge of the
fluctuations of the particle in the aging period can be used to
statistically predict its response to an external field. Such
correlations vanish in the case of nonaging transport, at least
asymptotically. Among other things we derive a scaling rela-
tion describing these correlations based on linear response
theory. As we argue at the end of the paper, similar strong
correlations might be found in other models and systems
which exhibit aging.

Model 1. We consider the well-known one-dimensional
CTRW on a lattice �1,2,14,15�. The lattice spacing is a and
the jumps are to nearest neighbors only. Waiting times be-
tween jump events are independent identically distributed

random variables with a common probability density func-
tion �PDF� ����. After waiting, the particle has a probability
1 /2+h /2 or 1 /2−h /2 to jump to the right or left, respec-
tively. In the aging period �0, ta� h=0 and the particles fol-
low an unbiased motion, while in the response period ta� t
the bias is 0�h�1. The total measurement time is t= ta+ tr,
where tr is called the response time. To define the response
one has to define the field which is responsible for the bias h.
For example, if the particles are coupled to a thermal heat
bath with temperature T, and driven by a uniform force field
F, standard detailed balance conditions give h=aF /2kbT,
when h�1 �4,14�. We consider later the generic case

���� �
A�−�1+��

���− ���
, �1�

when �→� and 0���1, A	0. Specific values of � for a
wide range of physical systems and models are given in
�1,2�. For example, for the annealed version of the trap
model �=T /Tg�1 �7�. For 0���1, the average waiting
time is infinite.

The position of the particle at time ta+ tr is X=Xa+Xr,
where Xa�Xr� is the displacement in the aging �response�
periods. More specifically, Xa=�i=1

na 
xi
�a�, Xr=�i=1

nr 
xi
�r�,

where 
xi
�a� and 
xi

�r� are the random jump lengths �of length
a� in the aging �0, ta� and response �ta , ta+ tr� periods, respec-
tively, while na and nr are the random number of jumps in
the aging and the response periods.

We investigate the correlation function ��Xa�2Xr	, which is
a measure for the correlation between the fluctuations in the
aging period �Xa�2 and the response to the driving force
switched on at time ta, Xr. We define a dimensionless
fluctuation-response �FR� parameter

FR�ta,tr� =
��Xa�2Xr	

��Xa�2	�Xr	
− 1, �2�

which is equal to zero when the correlations vanish. For the
CTRW under investigation one can show that ��Xa�2Xr	
=ha3�nanr	 and
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FR�ta,tr� =
�nanr	

�na	�nr	
− 1. �3�

Thus �nanr	, the correlations of the number of steps in the
aging period with the number of steps in the response period,
gives a measure for the correlations between the fluctuations
in the displacement in the aging period and the response to
the bias.

Let Pta,tr
�na ,nr� be the probability of making na jumps in

the aging period and nr jumps in the response period. Knowl-
edge of this function is needed for the calculation of the FR
parameter and other high order correlation functions �16�,
which we shall discuss in a future publication �17�. The paths
with na�nr� jump events in the aging period �response period�
clearly satisfy tna

� ta� tna+1 and �tna+nr
� tr+ ta� tna+nr+1�, re-

spectively, where the subscript n in tn is for the jump number.
Hence

Pta,tr
�na,nr� = �I�tna

� ta � tna+1�I�tna+nr
� tr + ta � tna+nr+1�	 ,

�4�

where I�x�=1 if the event in the parenthesis is true, other-
wise it is zero. We define the double Laplace transform
ta→u and tr→s of Pta,tr

�na ,nr�, Pu,s�na ,nr�
=
0

�dtre
−str
0

�dtae−utaPta,tr
�na ,nr�. Following the calculation

in �17�, using the renewal property of the CTRW,

Pu,s�na,nr = 0� =
�̂na�u�

s
�1 − �̂�u�

u
−

�̂�s� − �̂�u�
u − s

� , �5�

while for nr�1,

Pu,s�na,nr� =
�̂na�u��̂nr−1�s�

s�u − s�
�1 − �̂�s����̂�s� − �̂�u�� . �6�

In Eqs. �5� and �6� �̂�u� and �̂�s� are Laplace transforms of
the waiting time PDF. Note that Eqs. �5� and �6� give the
proper normalization since �na=0

� �nr=0
� Pu,s�na ,nr�=1/ �us�.

Using Eq. �6� and �nanr	u,s=�na=0
� �nr=0

� nanrPu,s�na ,nr� we
find

�nanr	u,s =
��̂�s� − �̂�u���̂�u�

s�u − s��1 − �̂�u��2�1 − �̂�s��
, �7�

and the averages �13� �na	u,s= �̂�u� / 
us�1− �̂�u���,

�nr	u,s =
�̂�s� − �̂�u�

s�u − s��1 − �̂�u���1 − �̂�s��
. �8�

In principle, once the double Laplace inversion of Eqs. �7�
and �8� is made, we can calculate the FR parameter.

If the dynamics is Markovian, namely, the waiting time
PDF is exponential ��t�=R exp�−Rt�,

�nanr	 = �na	�nr	 = RtaRtr, �9�

and FR�ta , tr�=0. For any non-Markovian process with a non-
exponential waiting time PDF, the FR parameter is generally
not equal to zero.

If the average waiting time ��	=
0
������d� is finite and in

the limit ta→� the fluctuation-response parameter Eq. �2�
satisfies

lim
ta→�

FR�ta,tr� = 0, �10�

and the correlations are lost in this limit. To see this use Eq.

�7� in the u→0 limit, the small u expansion �̂�u��1−u��	
to find ��Xa�2Xr	�ha3 1

u2��	
1

s2��	 . Interestingly, this result is

valid for any s	0, namely, both for short and long response
times tr. Hence when ta→� we find ��Xa�2Xr	�ha3 ta

��	
tr

��	 and

similar calculations for ��Xa�2	, and �Xr	 complete the proof
of Eq. �10�. Thus, if the aging period is much larger than the
finite time between jumps the response is not correlated with
the fluctuations, since the particles had enough time to
equilibrate.

A very different behavior is found in the common situa-
tion �1,2� where the average waiting time is infinite, namely,
when 0���1 in Eq. �1�. Then using Eq. �7�, in the limit of
small s and u,

��Xa�2Xr	 � ha3 1

A2

u� − s�

�u − s�u2�s1+� , �11�

where the expansion �̂�u��1−Au� was used. Skipping the
technical details, we analytically invert the double Laplace
transform in Eq. �11� to the double time domain and find

��Xa�2Xr	 � ha3 tr
2�

A2 g� ta

tr
� , �12�

which is valid in the limit of long times ta and tr. The scaling
function in Eq. �12� is a hypergeometric function

g�x� =
x�

2F1�1,− �;1 + �;− x�
�2�1 + ��

−
x2�

��1 + 2��
. �13�

Equation �12� is a main result of this paper, since it shows
that even in the long aging time limit a nontrivial correlation
between fluctuation and response exists. The hypergeometric
function in Eq. �13� is tabulated in MATHEMATICA, hence the
solution is not a formal expression. Using ��Xa�2	
�a2 ta

�

A��1+�� , and the aging response of the model �14� �Xr	

�ha
�ta+tr��−ta

�

A��1+�� , the dimensionless fluctuation-response param-

eter is

FR�x� =
2F1�1,− �;1 + �,− x� − x� �2�1 + ��

��1 + 2��
�1 + x�� − x� − 1, �14�

where x= ta / tr. If �=1 we have FR�x�=0 indicating that the
nontrivial correlations are found in the limit of long times,
only for anomalous processes with ��1. Equation �14� is
valid in the limit ta→� and tr→�, their ratio x remaining
finite.

Comparison between simulations of the CTRW process
and Eq. �14� for �=1/2 and �=3/4 is made in Fig. 1. The
figure illustrates that the correlations between fluctuations
and response becomes larger as x= ta / tr is increased. This is
the expected behavior, the larger the aging time ta compared
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with the response time tr, the stronger the correlation, since if
tr� ta the particle already “forgot” its behavior in the aging
period. Figure 1 also demonstrates that as � is decreased the
correlations becomes stronger. In the simulation ta=3
106,
����=��−�1+��, for �	1, otherwise it is zero.

Using Eq. �14�, we find in the limit x= ta / tr�1

FR�x� � �1 −
�2�1 + ��
��1 + 2���x� + O�x� , �15�

namely, weak correlations between fluctuations and re-
sponse. In the opposite limit, the aging regime of x�1, the
correlations are stronger, and we find

FR�x� � ��������2

��2��
− 1� −

1

1 + �

1

x� , x → � . �16�

The leading term gives the nontrivial behavior of the
fluctuation-response parameter when ta / tr→�. We find the
bounds 0� limx→�FR�x��1, where the lower bound with
zero correlations corresponds to �→1 and the upper bound
of strong correlations is found when �→0.

Applying linear response theory to Eq. �12�, yields the
connection between the correlation function and physically
observable parameters. In this same limit, aging Einstein re-
lations between the ensemble average response and the fluc-
tuations in the absence of the field are valid �4,14�. We find
using h=aF /2kbT→0,

��Xa�2Xr	 �
2FD�

2 tr
2�

kbT
g� ta

tr
� , �17�

where D�=a2 /2A is the fractional diffusion coefficient,
which according to its definition is �X2	�2D�t� /��1+��
when F=0 �1,18�. Equation �17� is important since it shows
that the transport coefficient D� and the exponent �, describ-
ing the fluctuations in the absence of the external driving
field, are the only system parameters needed for the determi-

nation of the correlation between fluctuations and the re-
sponse.

We investigated the FR parameter also for a CTRW with
random barriers. Here, the probability of jumping right from
site i is �1+hi� /2, where 
hi� are independent identically dis-
tributed random variables. In our simulations we considered
hi=hr or hi=−hr with probability 1 /2. The sequence 
hi� is
fixed at the beginning of the simulation. In addition, a bias h
is turned on at time ta, so for time t	 ta the probability of
jumping right from site i is �1+hi+h� /2. In Fig. 1 we show
that the agreement between this modified CTRW and the
standard CTRW with hi=0 is good, at least for the param-
eters under investigation �we considered h=hr=0.1�. The lo-
cal random bias hi does not alter the behavior of the FR
parameter, since the long tailed waiting times are dominating
the aging behavior.

Model 2. As shown by Feigelman and Vinokur �19�, trans-
port in disordered systems with quenched disorder may ex-
hibit aging effects. Hence it is natural to check if fluctuations
and response are correlated for models of quenched disorder,
and if so how do they compare with those we obtained ana-
lytically in the annealed CTRW model? In particular do
quenched models also exhibit a transition between an aging
regime with strong correlations to a regime with vanishing
correlations when ta→�? For that aim we consider the
quenched trap model on a one-dimensional lattice �3,4�.
Each lattice site i has a fixed random energy Ei	0, which is
the energy barrier the particle has to cross in order to jump
from i to i+1 or i−1. The energy barriers are all independent
identically distributed random variables with a common PDF
��E�= �Tg�−1e−E/Tg. The PDF of escape times from site i is
exponential with a mean escape time �i=exp�Ei /T�. Notice
that according to this Arrhenius law small fluctuations in the
energy may lead to exponentially large fluctuations in the
waiting time in site i. After waiting in the trap for a random
time the particle has a probability 1 /2 of jumping right or
left if the system is not biased. It has a probability �1±h� /2
of jumping left or right when the bias is not zero. In simu-
lations one lets the system evolve without bias in the aging
period �0, ta� and then a bias is switched on.

It is well known that the model exhibits aging behaviors
when T�Tg �6�. Bertin and Bouchaud showed that the aging
exhibits linear and nonlinear types of response, depending on
the magnitude of h �4�. Here we consider only the linear
response regime of h→0. The trap model is not an exactly
solvable model since the effect of the quenched disorder is to
induce nonindependent waiting times in the random walk.
Hence we investigate the trap model using numerical simu-
lations.

Simulation results for the FR parameter are shown in Fig.
2. We choose model parameters known to exhibit aging �4�
ta=106, h=0.008, and vary tr. In the high temperature er-
godic phase T /Tg=5/2, the FR parameter is practically zero
with small deviations due to the finite time of the simulation.
For T /Tg=1/2, namely, in the aging phase, we see strong
correlations between the fluctuations and the response espe-
cially when tr� ta. We also plot the FR�x� parameter for the
CTRW model using the exponent �=2T /Tg / �1+T /Tg�
=2/3 �� is the exponent describing the averaged response
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FIG. 1. The fluctuation-response parameter FR�x� as a function
of x= ta / tr. Simulations and theory �solid curve� agree well without
fitting. We use �=3/4 �crosses� and �=1/2 �diamonds� and see
that the correlations are stronger when �=1/2. Simulations of a
modified CTRW with random bias �stars with error bars� are in
good agreement with the CTRW results.
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function �4��. Figure 2 clearly demonstrates that the FR pa-
rameter in the CTRW theory is smaller than the correspond-
ing FR parameter of the quenched trap model. In the
quenched trap model, unlike the CTRW process, the random
walk is correlated in the sense that a particle once returning
to a specific trap will recall its waiting time for that trap,
hence the FR parameter for the quenched model is larger than
the one found for the CTRW.

There are many examples of systems where the correla-
tions discussed in this manuscript may become important, we
mention the recent single particle experiments of microbeads
diffusing in actin networks �20�, which exhibits power law

waiting times and anomalous diffusion, very much reminis-
cent of the trap and CTRW models. However it is important
to realize that correlations between fluctuations and transport
are not expected to be limited only for systems whose dy-
namics is characterized with power law waiting time distri-
bution. Consider, for example, the measurement of single
LacI repressor protein on DNA �21�, where a wide distribu-
tion of diffusion coefficients of the proteins was found. This
distribution is likely due to the random DNA sequence the
single protein explores. Since the single molecules have
widely distributed diffusion constants, their response to an
external field is likely correlated with their history of diffu-
sion, e.g., particles with small �or large� diffusion, constants
have a weak �strong� response, respectively. Further work on
the correlations between fluctuations and response, in other
models of transport, is left for future work.

To conclude, for any non-Markovian CTRW, the correla-
tions between the fluctuations in the aging period and the
response are finite if the aging period is finite. Both for the
CTRW with ��1 and for the quenched trap model with
T�Tg, a nontrivial FR parameter was found when the aging
period is asymptotically long. These correlations are found
when the models exhibit aging and anomalous diffusion. I
suspect that other models and systems with aging behavior
will exhibit similar nontrivial correlations since aging behav-
ior is related to long memory effect. The wide applications of
the CTRW theory, the trap model, and linear response theory
make the main equations �14� and �17� of this manuscript
relevant to many systems and testable in experiments.
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FIG. 2. The FR parameter for the quenched trap model. The plus
symbols are for the high temperature phase
T=5Tg /2, namely, T	Tg, which does not exhibit correlations FR

�0, while the star symbols are for the aging phase T=Tg /2, which
exhibits nontrivial correlations. The solid curve is the CTRW
theory.
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